Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{5}-3x^{2})-\left(4x^{5}-3x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})}{\left(x^{3}\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{x^{3}\left(5\times 4x^{5-1}+2\left(-3\right)x^{2-1}\right)-\left(4x^{5}-3x^{2}\right)\times 3x^{3-1}}{\left(x^{3}\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{x^{3}\left(20x^{4}-6x^{1}\right)-\left(4x^{5}-3x^{2}\right)\times 3x^{2}}{\left(x^{3}\right)^{2}}
Simplificați.
\frac{x^{3}\times 20x^{4}+x^{3}\left(-6\right)x^{1}-\left(4x^{5}-3x^{2}\right)\times 3x^{2}}{\left(x^{3}\right)^{2}}
Înmulțiți x^{3} cu 20x^{4}-6x^{1}.
\frac{x^{3}\times 20x^{4}+x^{3}\left(-6\right)x^{1}-\left(4x^{5}\times 3x^{2}-3x^{2}\times 3x^{2}\right)}{\left(x^{3}\right)^{2}}
Înmulțiți 4x^{5}-3x^{2} cu 3x^{2}.
\frac{20x^{3+4}-6x^{3+1}-\left(4\times 3x^{5+2}-3\times 3x^{2+2}\right)}{\left(x^{3}\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{20x^{7}-6x^{4}-\left(12x^{7}-9x^{4}\right)}{\left(x^{3}\right)^{2}}
Simplificați.
\frac{8x^{7}+3x^{4}}{\left(x^{3}\right)^{2}}
Combinați termenii asemenea.