Evaluați
\frac{63a^{8}}{8c^{2}}
Extindere
\frac{63a^{8}}{8c^{2}}
Partajați
Copiat în clipboard
\frac{a^{2}\times 2^{3}c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 3 cu -2 pentru a obține -6.
\frac{a^{2}\times 8c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Calculați 2 la puterea 3 și obțineți 8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Orice număr împărțit la -1 dă opusul său.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times \frac{1}{2}\right)^{2}}\right)^{-2}
Calculați 2 la puterea -1 și obțineți \frac{1}{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\right)^{2}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Extindeți \left(a^{2}\times \frac{1}{2}\right)^{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \frac{1}{4}}\right)^{-2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\times \frac{1}{4}\right)^{-2}}
Pentru a ridica \frac{c}{a^{4}\times \frac{1}{4}} la o putere, ridicați atât numărătorul, cât și numitorul la acea putere, apoi împărțiți.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\right)^{-2}\times \left(\frac{1}{4}\right)^{-2}}
Extindeți \left(a^{4}\times \frac{1}{4}\right)^{-2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times \left(\frac{1}{4}\right)^{-2}}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 4 cu -2 pentru a obține -8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times 16}
Calculați \frac{1}{4} la puterea -2 și obțineți 16.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{2c^{-2}}{a^{-8}\times 16}
Exprimați 2\times \frac{c^{-2}}{a^{-8}\times 16} ca fracție unică.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{c^{-2}}{8a^{-8}}
Reduceți prin eliminare 2 atât în numărător, cât și în numitor.
\frac{a^{2}\times 8c^{-2}}{\left(-1\right)^{-6}a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Extindeți \left(-a\right)^{-6}.
\frac{a^{2}\times 8c^{-2}}{1a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Calculați -1 la puterea -6 și obțineți 1.
8c^{-2}a^{8}-\frac{c^{-2}}{8a^{-8}}
Pentru a împărți puterile cu aceeași bază, scădeți exponentul numitorului din exponentul numărătorului.
\frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}}-\frac{c^{-2}}{8a^{-8}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 8c^{-2}a^{8} cu \frac{8a^{-8}}{8a^{-8}}.
\frac{8c^{-2}a^{8}\times 8a^{-8}-c^{-2}}{8a^{-8}}
Deoarece \frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}} și \frac{c^{-2}}{8a^{-8}} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{64c^{-2}-c^{-2}}{8a^{-8}}
Faceți înmulțiri în 8c^{-2}a^{8}\times 8a^{-8}-c^{-2}.
\frac{63c^{-2}}{8a^{-8}}
Combinați termeni similari în 64c^{-2}-c^{-2}.
\frac{a^{2}\times 2^{3}c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 3 cu -2 pentru a obține -6.
\frac{a^{2}\times 8c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Calculați 2 la puterea 3 și obțineți 8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Orice număr împărțit la -1 dă opusul său.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times \frac{1}{2}\right)^{2}}\right)^{-2}
Calculați 2 la puterea -1 și obțineți \frac{1}{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\right)^{2}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Extindeți \left(a^{2}\times \frac{1}{2}\right)^{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \frac{1}{4}}\right)^{-2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\times \frac{1}{4}\right)^{-2}}
Pentru a ridica \frac{c}{a^{4}\times \frac{1}{4}} la o putere, ridicați atât numărătorul, cât și numitorul la acea putere, apoi împărțiți.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\right)^{-2}\times \left(\frac{1}{4}\right)^{-2}}
Extindeți \left(a^{4}\times \frac{1}{4}\right)^{-2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times \left(\frac{1}{4}\right)^{-2}}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 4 cu -2 pentru a obține -8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times 16}
Calculați \frac{1}{4} la puterea -2 și obțineți 16.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{2c^{-2}}{a^{-8}\times 16}
Exprimați 2\times \frac{c^{-2}}{a^{-8}\times 16} ca fracție unică.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{c^{-2}}{8a^{-8}}
Reduceți prin eliminare 2 atât în numărător, cât și în numitor.
\frac{a^{2}\times 8c^{-2}}{\left(-1\right)^{-6}a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Extindeți \left(-a\right)^{-6}.
\frac{a^{2}\times 8c^{-2}}{1a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Calculați -1 la puterea -6 și obțineți 1.
8c^{-2}a^{8}-\frac{c^{-2}}{8a^{-8}}
Pentru a împărți puterile cu aceeași bază, scădeți exponentul numitorului din exponentul numărătorului.
\frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}}-\frac{c^{-2}}{8a^{-8}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 8c^{-2}a^{8} cu \frac{8a^{-8}}{8a^{-8}}.
\frac{8c^{-2}a^{8}\times 8a^{-8}-c^{-2}}{8a^{-8}}
Deoarece \frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}} și \frac{c^{-2}}{8a^{-8}} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{64c^{-2}-c^{-2}}{8a^{-8}}
Faceți înmulțiri în 8c^{-2}a^{8}\times 8a^{-8}-c^{-2}.
\frac{63c^{-2}}{8a^{-8}}
Combinați termeni similari în 64c^{-2}-c^{-2}.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}