Direct la conținutul principal
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}
Raționalizați numitor de \frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{3+2\sqrt{2}} prin înmulțirea numărătorului și a numitorului de către 3-2\sqrt{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{3^{2}-\left(2\sqrt{2}\right)^{2}}
Să luăm \left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-\left(2\sqrt{2}\right)^{2}}
Calculați 3 la puterea 2 și obțineți 9.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-2^{2}\left(\sqrt{2}\right)^{2}}
Extindeți \left(2\sqrt{2}\right)^{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-4\left(\sqrt{2}\right)^{2}}
Calculați 2 la puterea 2 și obțineți 4.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-4\times 2}
Pătratul lui \sqrt{2} este 2.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-8}
Înmulțiți 4 cu 2 pentru a obține 8.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{1}
Scădeți 8 din 9 pentru a obține 1.
4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)
Orice lucru împărțit la unu este egal cu sine însuși.
\left(4+4\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)
Utilizați proprietatea de distributivitate pentru a înmulți 4 cu 1+\sqrt{2}.
\left(4-4\sqrt{2}+4\sqrt{2}-4\left(\sqrt{2}\right)^{2}\right)\left(3-2\sqrt{2}\right)
Aplicați proprietatea distributivă prin înmulțirea fiecărui termen de 4+4\sqrt{2} la fiecare termen de 1-\sqrt{2}.
\left(4-4\left(\sqrt{2}\right)^{2}\right)\left(3-2\sqrt{2}\right)
Combinați -4\sqrt{2} cu 4\sqrt{2} pentru a obține 0.
\left(4-4\times 2\right)\left(3-2\sqrt{2}\right)
Pătratul lui \sqrt{2} este 2.
\left(4-8\right)\left(3-2\sqrt{2}\right)
Înmulțiți -4 cu 2 pentru a obține -8.
-4\left(3-2\sqrt{2}\right)
Scădeți 8 din 4 pentru a obține -4.
-12+8\sqrt{2}
Utilizați proprietatea de distributivitate pentru a înmulți -4 cu 3-2\sqrt{2}.