Rezolvați pentru a
a=-\frac{bf}{f-b}
b\neq 0\text{ and }f\neq 0\text{ and }f\neq b
Rezolvați pentru b
b=-\frac{af}{f-a}
a\neq 0\text{ and }f\neq 0\text{ and }f\neq a
Partajați
Copiat în clipboard
ab=bf+af
Variabila a nu poate fi egală cu 0, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu abf, cel mai mic multiplu comun al f,a,b.
ab-af=bf
Scădeți af din ambele părți.
\left(b-f\right)a=bf
Combinați toți termenii care conțin a.
\frac{\left(b-f\right)a}{b-f}=\frac{bf}{b-f}
Se împart ambele părți la b-f.
a=\frac{bf}{b-f}
Împărțirea la b-f anulează înmulțirea cu b-f.
a=\frac{bf}{b-f}\text{, }a\neq 0
Variabila a nu poate să fie egală cu 0.
ab=bf+af
Variabila b nu poate fi egală cu 0, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu abf, cel mai mic multiplu comun al f,a,b.
ab-bf=af
Scădeți bf din ambele părți.
\left(a-f\right)b=af
Combinați toți termenii care conțin b.
\frac{\left(a-f\right)b}{a-f}=\frac{af}{a-f}
Se împart ambele părți la a-f.
b=\frac{af}{a-f}
Împărțirea la a-f anulează înmulțirea cu a-f.
b=\frac{af}{a-f}\text{, }b\neq 0
Variabila b nu poate să fie egală cu 0.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}