Direct la conținutul principal
Evaluați
Tick mark Image
Extindere
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{\frac{x+y}{x+y}+\frac{x-y}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x+y}{x+y}.
\frac{\frac{x+y+x-y}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x+y}{x+y} și \frac{x-y}{x+y} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{\frac{2x}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Combinați termeni similari în x+y+x-y.
\frac{\frac{2x}{x+y}}{\frac{x+y}{x+y}-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x+y}{x+y}.
\frac{\frac{2x}{x+y}}{\frac{x+y-\left(x-y\right)}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x+y}{x+y} și \frac{x-y}{x+y} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{\frac{2x}{x+y}}{\frac{x+y-x+y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Faceți înmulțiri în x+y-\left(x-y\right).
\frac{\frac{2x}{x+y}}{\frac{2y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Combinați termeni similari în x+y-x+y.
\frac{2x\left(x+y\right)}{\left(x+y\right)\times 2y}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Împărțiți \frac{2x}{x+y} la \frac{2y}{x+y} înmulțind pe \frac{2x}{x+y} cu reciproca lui \frac{2y}{x+y}.
\frac{x}{y}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Reduceți prin eliminare 2\left(x+y\right) atât în numărător, cât și în numitor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x^{2}+y^{2}}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x^{2}+y^{2}}{x^{2}+y^{2}} și \frac{x-y}{x^{2}+y^{2}} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x^{2}+y^{2}}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}-\left(x^{2}-y\right)}{x^{2}+y^{2}}}
Deoarece \frac{x^{2}+y^{2}}{x^{2}+y^{2}} și \frac{x^{2}-y}{x^{2}+y^{2}} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}-x^{2}+y}{x^{2}+y^{2}}}
Faceți înmulțiri în x^{2}+y^{2}-\left(x^{2}-y\right).
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{y^{2}+y}{x^{2}+y^{2}}}
Combinați termeni similari în x^{2}+y^{2}-x^{2}+y.
\frac{x}{y}+\frac{\left(x^{2}+y^{2}+x-y\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)\left(y^{2}+y\right)}
Împărțiți \frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}} la \frac{y^{2}+y}{x^{2}+y^{2}} înmulțind pe \frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}} cu reciproca lui \frac{y^{2}+y}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{x^{2}+x+y^{2}-y}{y^{2}+y}
Reduceți prin eliminare x^{2}+y^{2} atât în numărător, cât și în numitor.
\frac{x}{y}+\frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Descompuneți în factori y^{2}+y.
\frac{x\left(y+1\right)}{y\left(y+1\right)}+\frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Cel mai mic multiplu comun al lui y și y\left(y+1\right) este y\left(y+1\right). Înmulțiți \frac{x}{y} cu \frac{y+1}{y+1}.
\frac{x\left(y+1\right)+x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Deoarece \frac{x\left(y+1\right)}{y\left(y+1\right)} și \frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{xy+x+x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Faceți înmulțiri în x\left(y+1\right)+x^{2}+x+y^{2}-y.
\frac{y^{2}+xy+2x+x^{2}-y}{y\left(y+1\right)}
Combinați termeni similari în xy+x+x^{2}+x+y^{2}-y.
\frac{y^{2}+xy+2x+x^{2}-y}{y^{2}+y}
Extindeți y\left(y+1\right).
\frac{\frac{x+y}{x+y}+\frac{x-y}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x+y}{x+y}.
\frac{\frac{x+y+x-y}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x+y}{x+y} și \frac{x-y}{x+y} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{\frac{2x}{x+y}}{1-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Combinați termeni similari în x+y+x-y.
\frac{\frac{2x}{x+y}}{\frac{x+y}{x+y}-\frac{x-y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x+y}{x+y}.
\frac{\frac{2x}{x+y}}{\frac{x+y-\left(x-y\right)}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x+y}{x+y} și \frac{x-y}{x+y} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{\frac{2x}{x+y}}{\frac{x+y-x+y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Faceți înmulțiri în x+y-\left(x-y\right).
\frac{\frac{2x}{x+y}}{\frac{2y}{x+y}}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Combinați termeni similari în x+y-x+y.
\frac{2x\left(x+y\right)}{\left(x+y\right)\times 2y}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Împărțiți \frac{2x}{x+y} la \frac{2y}{x+y} înmulțind pe \frac{2x}{x+y} cu reciproca lui \frac{2y}{x+y}.
\frac{x}{y}+\frac{1+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Reduceți prin eliminare 2\left(x+y\right) atât în numărător, cât și în numitor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+\frac{x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x^{2}+y^{2}}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{1-\frac{x^{2}-y}{x^{2}+y^{2}}}
Deoarece \frac{x^{2}+y^{2}}{x^{2}+y^{2}} și \frac{x-y}{x^{2}+y^{2}} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}-\frac{x^{2}-y}{x^{2}+y^{2}}}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 1 cu \frac{x^{2}+y^{2}}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}-\left(x^{2}-y\right)}{x^{2}+y^{2}}}
Deoarece \frac{x^{2}+y^{2}}{x^{2}+y^{2}} și \frac{x^{2}-y}{x^{2}+y^{2}} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{x^{2}+y^{2}-x^{2}+y}{x^{2}+y^{2}}}
Faceți înmulțiri în x^{2}+y^{2}-\left(x^{2}-y\right).
\frac{x}{y}+\frac{\frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}}}{\frac{y^{2}+y}{x^{2}+y^{2}}}
Combinați termeni similari în x^{2}+y^{2}-x^{2}+y.
\frac{x}{y}+\frac{\left(x^{2}+y^{2}+x-y\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)\left(y^{2}+y\right)}
Împărțiți \frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}} la \frac{y^{2}+y}{x^{2}+y^{2}} înmulțind pe \frac{x^{2}+y^{2}+x-y}{x^{2}+y^{2}} cu reciproca lui \frac{y^{2}+y}{x^{2}+y^{2}}.
\frac{x}{y}+\frac{x^{2}+x+y^{2}-y}{y^{2}+y}
Reduceți prin eliminare x^{2}+y^{2} atât în numărător, cât și în numitor.
\frac{x}{y}+\frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Descompuneți în factori y^{2}+y.
\frac{x\left(y+1\right)}{y\left(y+1\right)}+\frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Cel mai mic multiplu comun al lui y și y\left(y+1\right) este y\left(y+1\right). Înmulțiți \frac{x}{y} cu \frac{y+1}{y+1}.
\frac{x\left(y+1\right)+x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Deoarece \frac{x\left(y+1\right)}{y\left(y+1\right)} și \frac{x^{2}+x+y^{2}-y}{y\left(y+1\right)} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{xy+x+x^{2}+x+y^{2}-y}{y\left(y+1\right)}
Faceți înmulțiri în x\left(y+1\right)+x^{2}+x+y^{2}-y.
\frac{y^{2}+xy+2x+x^{2}-y}{y\left(y+1\right)}
Combinați termeni similari în xy+x+x^{2}+x+y^{2}-y.
\frac{y^{2}+xy+2x+x^{2}-y}{y^{2}+y}
Extindeți y\left(y+1\right).