Evaluați
\frac{x^{2}}{3}
Extindere
\frac{x^{2}}{3}
Grafic
Partajați
Copiat în clipboard
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Utilizați proprietatea de distributivitate pentru a înmulți x+3 cu x+4 și a combina termenii similari.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Să luăm \left(x+1\right)\left(x-1\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ridicați 1 la pătrat.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Utilizați proprietatea de distributivitate pentru a înmulți x^{2} cu 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Utilizați proprietatea de distributivitate pentru a înmulți 3 cu x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Înmulțiți \frac{x^{2}+7x+12}{x^{2}-1} cu \frac{x^{2}+x^{3}}{x+4} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Înmulțiți \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} cu \frac{x-1}{3x+9} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja.
\frac{x^{2}}{3}
Reduceți prin eliminare \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) atât în numărător, cât și în numitor.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Utilizați proprietatea de distributivitate pentru a înmulți x+3 cu x+4 și a combina termenii similari.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Să luăm \left(x+1\right)\left(x-1\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ridicați 1 la pătrat.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Utilizați proprietatea de distributivitate pentru a înmulți x^{2} cu 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Utilizați proprietatea de distributivitate pentru a înmulți 3 cu x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Înmulțiți \frac{x^{2}+7x+12}{x^{2}-1} cu \frac{x^{2}+x^{3}}{x+4} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Înmulțiți \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} cu \frac{x-1}{3x+9} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja.
\frac{x^{2}}{3}
Reduceți prin eliminare \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) atât în numărător, cât și în numitor.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}