\frac { ( \frac { 1 } { 3 } + \frac { 7 } { 9 } ) ^ { 2 } } { ( 1 - \frac { 1 } { 2 } ) ^ { 2 } \cdot ( - 2 ) ^ { 3 } - \frac { 3 } { 2 } } + ( - \frac { 1 } { 6 } ) ^ { 2 } + \frac { \frac { 1 } { 4 } - \frac { 1 } { 5 } } { ( 1 - \frac { 2 } { 5 } ) ^ { 2 } } | - \frac { \frac { 1 } { 3 } - \frac { 2 } { 9 } } { \frac { 1 } { 8 } - \frac { 15 } { 8 } } =
Evaluați
-\frac{239}{756}\approx -0,316137566
Descompunere în factori
-\frac{239}{756} = -0,31613756613756616
Partajați
Copiat în clipboard
\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Adunați \frac{1}{3} și \frac{7}{9} pentru a obține \frac{10}{9}.
\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Calculați \frac{10}{9} la puterea 2 și obțineți \frac{100}{81}.
\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Scădeți \frac{1}{2} din 1 pentru a obține \frac{1}{2}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Calculați -2 la puterea 3 și obțineți -8.
\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Înmulțiți \frac{1}{4} cu -8 pentru a obține -2.
\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Scădeți \frac{3}{2} din -2 pentru a obține -\frac{7}{2}.
\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Împărțiți \frac{100}{81} la -\frac{7}{2} înmulțind pe \frac{100}{81} cu reciproca lui -\frac{7}{2}.
-\frac{200}{567}+\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Înmulțiți \frac{100}{81} cu -\frac{2}{7} pentru a obține -\frac{200}{567}.
-\frac{200}{567}+\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Calculați -\frac{1}{6} la puterea 2 și obțineți \frac{1}{36}.
-\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Adunați -\frac{200}{567} și \frac{1}{36} pentru a obține -\frac{737}{2268}.
-\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Scădeți \frac{1}{5} din \frac{1}{4} pentru a obține \frac{1}{20}.
-\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Scădeți \frac{2}{5} din 1 pentru a obține \frac{3}{5}.
-\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Calculați \frac{3}{5} la puterea 2 și obțineți \frac{9}{25}.
-\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Împărțiți \frac{1}{20} la \frac{9}{25} înmulțind pe \frac{1}{20} cu reciproca lui \frac{9}{25}.
-\frac{737}{2268}+\frac{5}{36}|-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}|
Înmulțiți \frac{1}{20} cu \frac{25}{9} pentru a obține \frac{5}{36}.
-\frac{737}{2268}+\frac{5}{36}|-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}|
Scădeți \frac{2}{9} din \frac{1}{3} pentru a obține \frac{1}{9}.
-\frac{737}{2268}+\frac{5}{36}|-\frac{\frac{1}{9}}{-\frac{7}{4}}|
Scădeți \frac{15}{8} din \frac{1}{8} pentru a obține -\frac{7}{4}.
-\frac{737}{2268}+\frac{5}{36}|-\frac{1}{9}\left(-\frac{4}{7}\right)|
Împărțiți \frac{1}{9} la -\frac{7}{4} înmulțind pe \frac{1}{9} cu reciproca lui -\frac{7}{4}.
-\frac{737}{2268}+\frac{5}{36}|-\left(-\frac{4}{63}\right)|
Înmulțiți \frac{1}{9} cu -\frac{4}{7} pentru a obține -\frac{4}{63}.
-\frac{737}{2268}+\frac{5}{36}|\frac{4}{63}|
Opusul lui -\frac{4}{63} este \frac{4}{63}.
-\frac{737}{2268}+\frac{5}{36}\times \frac{4}{63}
Valoarea absolută a unui număr real a este a atunci când a\geq 0 sau -a atunci când a<0. Valoarea absolută a lui \frac{4}{63} este \frac{4}{63}.
-\frac{737}{2268}+\frac{5}{567}
Înmulțiți \frac{5}{36} cu \frac{4}{63} pentru a obține \frac{5}{567}.
-\frac{239}{756}
Adunați -\frac{737}{2268} și \frac{5}{567} pentru a obține -\frac{239}{756}.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}