Przejdź do głównej zawartości
Microsoft
|
Math Solver
Rozwiąż
Ćwiczenie
Grać
Tematy
Wstęp do Algebry
Średnia
Tryb
Największy Wspólny Dzielnik
Najmniejsza Wspólna Wielokrotność
Kolejność Wykonywania Działań
Ułamki
Ułamki Mieszane
Rozkład na Czynniki Pierwsze
Wykładniki
Pierwiastki
Algebra
Łączenie Wyrazów Podobnych
Rozwiąż dla Zmiennej
Czynnik
Rozwiń
Rozwiąż Ułamki
Równania Liniowe
Równania Kwadratowe
Nierówności
Układy Równań
Macierze
Trygonometria
Uprość
Rozwiąż
Grafy
Rozwiąż Równania
Rachunek
Pochodne
Całki
Granice
Wejścia algebry
Wejścia trygonometryczne
Dane wejściowe rachunku różniczkowego
Wejścia matrycowe
Rozwiąż
Ćwiczenie
Grać
Tematy
Wstęp do Algebry
Średnia
Tryb
Największy Wspólny Dzielnik
Najmniejsza Wspólna Wielokrotność
Kolejność Wykonywania Działań
Ułamki
Ułamki Mieszane
Rozkład na Czynniki Pierwsze
Wykładniki
Pierwiastki
Algebra
Łączenie Wyrazów Podobnych
Rozwiąż dla Zmiennej
Czynnik
Rozwiń
Rozwiąż Ułamki
Równania Liniowe
Równania Kwadratowe
Nierówności
Układy Równań
Macierze
Trygonometria
Uprość
Rozwiąż
Grafy
Rozwiąż Równania
Rachunek
Pochodne
Całki
Granice
Wejścia algebry
Wejścia trygonometryczne
Dane wejściowe rachunku różniczkowego
Wejścia matrycowe
Podstawowy
algebra
trygonometria
rachunek
statystyka
macierze
Znaków
Oblicz
\text{Divergent}
Quiz
Limits
5 działań(-nia) podobnych(-ne) do:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Podobne zadania z wyszukiwania w sieci web
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Więcej elementów
Udostępnij
Kopiuj
Skopiowano do schowka
Podobne Zadania
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Do góry