Przejdź do głównej zawartości
Microsoft
|
Math Solver
Rozwiąż
Ćwiczenie
Grać
Tematy
Wstęp do Algebry
Średnia
Tryb
Największy Wspólny Dzielnik
Najmniejsza Wspólna Wielokrotność
Kolejność Wykonywania Działań
Ułamki
Ułamki Mieszane
Rozkład na Czynniki Pierwsze
Wykładniki
Pierwiastki
Algebra
Łączenie Wyrazów Podobnych
Rozwiąż dla Zmiennej
Czynnik
Rozwiń
Rozwiąż Ułamki
Równania Liniowe
Równania Kwadratowe
Nierówności
Układy Równań
Macierze
Trygonometria
Uprość
Rozwiąż
Grafy
Rozwiąż Równania
Rachunek
Pochodne
Całki
Granice
Wejścia algebry
Wejścia trygonometryczne
Dane wejściowe rachunku różniczkowego
Wejścia matrycowe
Rozwiąż
Ćwiczenie
Grać
Tematy
Wstęp do Algebry
Średnia
Tryb
Największy Wspólny Dzielnik
Najmniejsza Wspólna Wielokrotność
Kolejność Wykonywania Działań
Ułamki
Ułamki Mieszane
Rozkład na Czynniki Pierwsze
Wykładniki
Pierwiastki
Algebra
Łączenie Wyrazów Podobnych
Rozwiąż dla Zmiennej
Czynnik
Rozwiń
Rozwiąż Ułamki
Równania Liniowe
Równania Kwadratowe
Nierówności
Układy Równań
Macierze
Trygonometria
Uprość
Rozwiąż
Grafy
Rozwiąż Równania
Rachunek
Pochodne
Całki
Granice
Wejścia algebry
Wejścia trygonometryczne
Dane wejściowe rachunku różniczkowego
Wejścia matrycowe
Podstawowy
algebra
trygonometria
rachunek
statystyka
macierze
Znaków
Oblicz
\infty
Quiz
Limits
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Podobne zadania z wyszukiwania w sieci web
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Więcej elementów
Udostępnij
Kopiuj
Skopiowano do schowka
Podobne Zadania
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Do góry