Overslaan en naar de inhoud gaan
Microsoft
|
Math Solver
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Basic
algebra
Trigonometrie
analyse
statistieken
matrices
Karakters
Evalueren
0
Quiz
Limits
5 opgaven vergelijkbaar met:
\lim_{ x \rightarrow 0 } 5x
Vergelijkbare problemen van Web Search
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Meer Items
Delen
Kopiëren
Gekopieerd naar klembord
Soortgelijke problemen
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Terug naar boven