Overslaan en naar de inhoud gaan
Microsoft
|
Math Solver
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Basic
algebra
Trigonometrie
analyse
statistieken
matrices
Karakters
Evalueren
5
Quiz
Limits
\lim_{ x \rightarrow 0 } 5
Vergelijkbare problemen van Web Search
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Meer Items
Delen
Kopiëren
Gekopieerd naar klembord
Soortgelijke problemen
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Terug naar boven