Overslaan en naar de inhoud gaan
Microsoft
|
Math Solver
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Oplossen
Oefenen
Spelen
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebra-ingangen
Trigonometrische ingangen
Calculus-invoer
Matrix-ingangen
Basic
algebra
Trigonometrie
analyse
statistieken
matrices
Karakters
Evalueren
\infty
Quiz
Limits
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Vergelijkbare problemen van Web Search
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Meer Items
Delen
Kopiëren
Gekopieerd naar klembord
Soortgelijke problemen
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Terug naar boven