x を解く (複素数の解)
x=\left(-1\right)\left(\left(-i\right)\ln(iy+\left(-1\right)\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\left(\left(-i\right)\ln(iy+\left(-1\right)\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\left(-1\right)\left(\left(-i\right)\ln(iy+\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{5}\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
x=\left(\left(-i\right)\ln(iy+\left(\left(-1\right)y^{2}+1\right)^{\frac{1}{2}})+2\pi n_{5}\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
x を解く
\left\{\begin{matrix}\\x=-\sqrt{\arcsin(y)+2\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }\left(n_{1}\geq 1\text{ and }|y|\leq 1\right)\text{ or }\left(n_{1}>-1\text{ and }y\leq 1\text{ and }y\geq 0\right)\text{; }x=\sqrt{\arcsin(y)+2\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }\left(n_{1}\geq 1\text{ and }|y|\leq 1\right)\text{ or }\left(n_{1}>-1\text{ and }y\leq 1\text{ and }y\geq 0\right)\text{, }&\text{unconditionally}\\x=\sqrt{-\arcsin(y)+2\pi n_{2}+\pi }\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}>-1\text{; }x=-\sqrt{-\arcsin(y)+2\pi n_{2}+\pi }\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}>-1\text{, }&|y|\leq 1\end{matrix}\right.
y を解く
y=\sin(x^{2})
グラフ
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}