メインコンテンツに移動します。
$\exponential{(x)}{2} - 4 x - 5 = 0 $
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-4 ab=-5
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-4x-5 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
a=-5 b=1
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 唯一の組み合わせが連立方程式の解です。
\left(x-5\right)\left(x+1\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=5 x=-1
方程式の解を求めるには、x-5=0 と x+1=0 を解きます。
a+b=-4 ab=1\left(-5\right)=-5
方程式を解くには、左側をグループ化して因数分解します。最初に、左側を x^{2}+ax+bx-5 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
a=-5 b=1
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 唯一の組み合わせが連立方程式の解です。
\left(x^{2}-5x\right)+\left(x-5\right)
x^{2}-4x-5 を \left(x^{2}-5x\right)+\left(x-5\right) に書き換えます。
x\left(x-5\right)+x-5
x の x^{2}-5x を除外します。
\left(x-5\right)\left(x+1\right)
分配特性を使用して一般項 x-5 を除外します。
x=5 x=-1
方程式の解を求めるには、x-5=0 と x+1=0 を解きます。
x^{2}-4x-5=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -4 を代入し、c に -5 を代入します。
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 を 2 乗します。
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 と -5 を乗算します。
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 を 20 に加算します。
x=\frac{-\left(-4\right)±6}{2}
36 の平方根をとります。
x=\frac{4±6}{2}
-4 の反数は 4 です。
x=\frac{10}{2}
± が正の時の方程式 x=\frac{4±6}{2} の解を求めます。 4 を 6 に加算します。
x=5
10 を 2 で除算します。
x=\frac{-2}{2}
± が負の時の方程式 x=\frac{4±6}{2} の解を求めます。 4 から 6 を減算します。
x=-1
-2 を 2 で除算します。
x=5 x=-1
方程式が解けました。
x^{2}-4x-5=0
このような二次方程式は、平方完成により解くことができます。平方完成するには、方程式は最初に x^{2}+bx=c の形式になっている必要があります。
x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
方程式の両辺に 5 を加算します。
x^{2}-4x=-\left(-5\right)
それ自体から -5 を減算すると 0 のままです。
x^{2}-4x=5
0 から -5 を減算します。
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
-4 (x 項の係数) を 2 で除算して -2 を求めます。次に、方程式の両辺に -2 の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-4x+4=5+4
-2 を 2 乗します。
x^{2}-4x+4=9
5 を 4 に加算します。
\left(x-2\right)^{2}=9
因数 x^{2}-4x+4。一般に、x^{2}+bx+c が完全平方である場合、常に \left(x+\frac{b}{2}\right)^{2} のように因数分解されます。
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
方程式の両辺の平方根をとります。
x-2=3 x-2=-3
簡約化します。
x=5 x=-1
方程式の両辺に 2 を加算します。