メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

x^{2}-3x-12=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-12\right)}}{2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-12\right)}}{2}
-3 を 2 乗します。
x=\frac{-\left(-3\right)±\sqrt{9+48}}{2}
-4 と -12 を乗算します。
x=\frac{-\left(-3\right)±\sqrt{57}}{2}
9 を 48 に加算します。
x=\frac{3±\sqrt{57}}{2}
-3 の反数は 3 です。
x=\frac{\sqrt{57}+3}{2}
± が正の時の方程式 x=\frac{3±\sqrt{57}}{2} の解を求めます。 3 を \sqrt{57} に加算します。
x=\frac{3-\sqrt{57}}{2}
± が負の時の方程式 x=\frac{3±\sqrt{57}}{2} の解を求めます。 3 から \sqrt{57} を減算します。
x^{2}-3x-12=\left(x-\frac{\sqrt{57}+3}{2}\right)\left(x-\frac{3-\sqrt{57}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に \frac{3+\sqrt{57}}{2} を x_{2} に \frac{3-\sqrt{57}}{2} を代入します。