メインコンテンツに移動します。
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

x^{2}+x^{2}-4x+4=100
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-2\right)^{2} を展開します。
2x^{2}-4x+4=100
x^{2} と x^{2} をまとめて 2x^{2} を求めます。
2x^{2}-4x+4-100=0
両辺から 100 を減算します。
2x^{2}-4x-96=0
4 から 100 を減算して -96 を求めます。
x^{2}-2x-48=0
両辺を 2 で除算します。
a+b=-2 ab=1\left(-48\right)=-48
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx-48 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-48 2,-24 3,-16 4,-12 6,-8
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -48 になる整数の組み合わせをすべて一覧表示します。
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
各組み合わせの和を計算します。
a=-8 b=6
解は和が -2 になる組み合わせです。
\left(x^{2}-8x\right)+\left(6x-48\right)
x^{2}-2x-48 を \left(x^{2}-8x\right)+\left(6x-48\right) に書き換えます。
x\left(x-8\right)+6\left(x-8\right)
1 番目のグループの x と 2 番目のグループの 6 をくくり出します。
\left(x-8\right)\left(x+6\right)
分配特性を使用して一般項 x-8 を除外します。
x=8 x=-6
方程式の解を求めるには、x-8=0 と x+6=0 を解きます。
x^{2}+x^{2}-4x+4=100
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-2\right)^{2} を展開します。
2x^{2}-4x+4=100
x^{2} と x^{2} をまとめて 2x^{2} を求めます。
2x^{2}-4x+4-100=0
両辺から 100 を減算します。
2x^{2}-4x-96=0
4 から 100 を減算して -96 を求めます。
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 2 を代入し、b に -4 を代入し、c に -96 を代入します。
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
-4 を 2 乗します。
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
-4 と 2 を乗算します。
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
-8 と -96 を乗算します。
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
16 を 768 に加算します。
x=\frac{-\left(-4\right)±28}{2\times 2}
784 の平方根をとります。
x=\frac{4±28}{2\times 2}
-4 の反数は 4 です。
x=\frac{4±28}{4}
2 と 2 を乗算します。
x=\frac{32}{4}
± が正の時の方程式 x=\frac{4±28}{4} の解を求めます。 4 を 28 に加算します。
x=8
32 を 4 で除算します。
x=-\frac{24}{4}
± が負の時の方程式 x=\frac{4±28}{4} の解を求めます。 4 から 28 を減算します。
x=-6
-24 を 4 で除算します。
x=8 x=-6
方程式が解けました。
x^{2}+x^{2}-4x+4=100
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-2\right)^{2} を展開します。
2x^{2}-4x+4=100
x^{2} と x^{2} をまとめて 2x^{2} を求めます。
2x^{2}-4x=100-4
両辺から 4 を減算します。
2x^{2}-4x=96
100 から 4 を減算して 96 を求めます。
\frac{2x^{2}-4x}{2}=\frac{96}{2}
両辺を 2 で除算します。
x^{2}+\left(-\frac{4}{2}\right)x=\frac{96}{2}
2 で除算すると、2 での乗算を元に戻します。
x^{2}-2x=\frac{96}{2}
-4 を 2 で除算します。
x^{2}-2x=48
96 を 2 で除算します。
x^{2}-2x+1=48+1
-2 (x 項の係数) を 2 で除算して -1 を求めます。次に、方程式の両辺に -1 の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-2x+1=49
48 を 1 に加算します。
\left(x-1\right)^{2}=49
因数x^{2}-2x+1。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-1\right)^{2}}=\sqrt{49}
方程式の両辺の平方根をとります。
x-1=7 x-1=-7
簡約化します。
x=8 x=-6
方程式の両辺に 1 を加算します。