x を解く
x=\sqrt{314}+1.5\approx 19.220045147
割り当て x
x≔\sqrt{314}+1.5
グラフ
共有
クリップボードにコピー済み
x=\frac{2\sqrt{314}+8943^{0}+\frac{3125}{5^{5}}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
1256=2^{2}\times 314 を因数分解します。 積の平方根を \sqrt{2^{2}}\sqrt{314} 平方根の積として書き直します。 \sqrt{2^{2}\times 314} 2^{2} の平方根をとります。
x=\frac{2\sqrt{314}+1+\frac{3125}{5^{5}}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
8943 の 0 乗を計算して 1 を求めます。
x=\frac{2\sqrt{314}+1+\frac{3125}{3125}+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
5 の 5 乗を計算して 3125 を求めます。
x=\frac{2\sqrt{314}+1+1+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
3125 を 3125 で除算して 1 を求めます。
x=\frac{2\sqrt{314}+2+\sqrt{1}}{1.5-2^{-1}+\left(-1\right)^{2058}}
1 と 1 を加算して 2 を求めます。
x=\frac{2\sqrt{314}+2+1}{1.5-2^{-1}+\left(-1\right)^{2058}}
1 の平方根を計算して 1 を取得します。
x=\frac{2\sqrt{314}+3}{1.5-2^{-1}+\left(-1\right)^{2058}}
2 と 1 を加算して 3 を求めます。
x=\frac{2\sqrt{314}+3}{1.5-\frac{1}{2}+\left(-1\right)^{2058}}
2 の -1 乗を計算して \frac{1}{2} を求めます。
x=\frac{2\sqrt{314}+3}{1+\left(-1\right)^{2058}}
1.5 から \frac{1}{2} を減算して 1 を求めます。
x=\frac{2\sqrt{314}+3}{1+1}
-1 の 2058 乗を計算して 1 を求めます。
x=\frac{2\sqrt{314}+3}{2}
1 と 1 を加算して 2 を求めます。
x=\sqrt{314}+\frac{3}{2}
2\sqrt{314}+3 の各項を 2 で除算して \sqrt{314}+\frac{3}{2} を求めます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}