メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image

Web 検索からの類似の問題

共有

t\left(-t+20\right)
t をくくり出します。
-t^{2}+20t=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
t=\frac{-20±\sqrt{20^{2}}}{2\left(-1\right)}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
t=\frac{-20±20}{2\left(-1\right)}
20^{2} の平方根をとります。
t=\frac{-20±20}{-2}
2 と -1 を乗算します。
t=\frac{0}{-2}
± が正の時の方程式 t=\frac{-20±20}{-2} の解を求めます。 -20 を 20 に加算します。
t=0
0 を -2 で除算します。
t=-\frac{40}{-2}
± が負の時の方程式 t=\frac{-20±20}{-2} の解を求めます。 -20 から 20 を減算します。
t=20
-40 を -2 で除算します。
-t^{2}+20t=-t\left(t-20\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 0 を x_{2} に 20 を代入します。