f を解く
\left\{\begin{matrix}f=-\frac{m^{\frac{2}{3}}n^{\frac{4}{3}}-1}{x^{\frac{2}{3}}}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&n\neq 0\text{ and }x=0\text{ and }|m|=\frac{1}{n^{2}}\end{matrix}\right.
m を解く
\left\{\begin{matrix}m=-\frac{1}{n^{2}}\text{; }m=\frac{1}{n^{2}}\text{, }&x=0\text{ and }n\neq 0\\m\in \mathrm{R}\text{, }&f=\frac{1}{x^{\frac{2}{3}}}\text{ and }n=0\text{ and }x\neq 0\\m=-\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{; }m=\frac{\left(1-x^{\frac{2}{3}}f\right)^{\frac{3}{2}}}{n^{2}}\text{, }&n\neq 0\text{ and }f\leq \frac{1}{x^{\frac{2}{3}}}\text{ and }x\neq 0\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
fx^{\frac{2}{3}}+m^{\frac{2}{3}}\left(n^{2}\right)^{\frac{2}{3}}=1
\left(mn^{2}\right)^{\frac{2}{3}} を展開します。
fx^{\frac{2}{3}}+m^{\frac{2}{3}}n^{\frac{4}{3}}=1
数値を累乗するには、指数を乗算します。2 と \frac{2}{3} を乗算して \frac{4}{3} を取得します。
fx^{\frac{2}{3}}=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
両辺から m^{\frac{2}{3}}n^{\frac{4}{3}} を減算します。
x^{\frac{2}{3}}f=-m^{\frac{2}{3}}n^{\frac{4}{3}}+1
項の順序を変更します。
x^{\frac{2}{3}}f=1-m^{\frac{2}{3}}n^{\frac{4}{3}}
方程式は標準形です。
\frac{x^{\frac{2}{3}}f}{x^{\frac{2}{3}}}=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
両辺を x^{\frac{2}{3}} で除算します。
f=\frac{1-m^{\frac{2}{3}}n^{\frac{4}{3}}}{x^{\frac{2}{3}}}
x^{\frac{2}{3}} で除算すると、x^{\frac{2}{3}} での乗算を元に戻します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}