f を解く (複素数の解)
\left\{\begin{matrix}f=\frac{i\left(-ix\sin(2x)+2i\cos(2x)\right)}{x\sin(2x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\\f\in \mathrm{C}\text{, }&2\left(-ix\sin(2x)+2i\cos(2x)\right)=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }x=-\frac{\pi n_{2}}{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}\end{matrix}\right.
f を解く
f=\frac{x\sin(2x)-2\cos(2x)}{x\sin(2x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}
グラフ
共有
クリップボードにコピー済み
xf=\tan(x)-\cot(x)+x
方程式は標準形です。
\frac{xf}{x}=\frac{\frac{\frac{1}{\cos(x)}-2\cos(x)}{\sin(x)}+x}{x}
両辺を x で除算します。
f=\frac{\frac{\frac{1}{\cos(x)}-2\cos(x)}{\sin(x)}+x}{x}
x で除算すると、x での乗算を元に戻します。
xf=\tan(x)-\cot(x)+x
方程式は標準形です。
\frac{xf}{x}=\frac{-2\cot(2x)+x}{x}
両辺を x で除算します。
f=\frac{-2\cot(2x)+x}{x}
x で除算すると、x での乗算を元に戻します。
f=-\frac{2\cot(2x)}{x}+1
-2\cot(2x)+x を x で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}