メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-5 ab=2\left(-7\right)=-14
グループ化によって式を因数分解します。まず、式を 2x^{2}+ax+bx-7 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-14 2,-7
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -14 になる整数の組み合わせをすべて一覧表示します。
1-14=-13 2-7=-5
各組み合わせの和を計算します。
a=-7 b=2
解は和が -5 になる組み合わせです。
\left(2x^{2}-7x\right)+\left(2x-7\right)
2x^{2}-5x-7 を \left(2x^{2}-7x\right)+\left(2x-7\right) に書き換えます。
x\left(2x-7\right)+2x-7
x の 2x^{2}-7x を除外します。
\left(2x-7\right)\left(x+1\right)
分配特性を使用して一般項 2x-7 を除外します。
2x^{2}-5x-7=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-7\right)}}{2\times 2}
-5 を 2 乗します。
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-7\right)}}{2\times 2}
-4 と 2 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2\times 2}
-8 と -7 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{81}}{2\times 2}
25 を 56 に加算します。
x=\frac{-\left(-5\right)±9}{2\times 2}
81 の平方根をとります。
x=\frac{5±9}{2\times 2}
-5 の反数は 5 です。
x=\frac{5±9}{4}
2 と 2 を乗算します。
x=\frac{14}{4}
± が正の時の方程式 x=\frac{5±9}{4} の解を求めます。 5 を 9 に加算します。
x=\frac{7}{2}
2 を開いて消去して、分数 \frac{14}{4} を約分します。
x=-\frac{4}{4}
± が負の時の方程式 x=\frac{5±9}{4} の解を求めます。 5 から 9 を減算します。
x=-1
-4 を 4 で除算します。
2x^{2}-5x-7=2\left(x-\frac{7}{2}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に \frac{7}{2} を x_{2} に -1 を代入します。
2x^{2}-5x-7=2\left(x-\frac{7}{2}\right)\left(x+1\right)
すべての p-\left(-q\right) の形式の式を p+q の形式に簡単にします。
2x^{2}-5x-7=2\times \frac{2x-7}{2}\left(x+1\right)
x から \frac{7}{2} を減算するには、公分母を求めて分子を減算します。次に、可能であれば分数を約分します。
2x^{2}-5x-7=\left(2x-7\right)\left(x+1\right)
2 と 2 の最大公約数 2 で約分します。