c d g - e g = \partial b
b を解く (複素数の解)
\left\{\begin{matrix}b=\frac{g\left(cd-e\right)}{∂}\text{, }&∂\neq 0\\b\in \mathrm{C}\text{, }&\left(c=\frac{e}{d}\text{ and }d\neq 0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }∂=0\right)\end{matrix}\right.
c を解く (複素数の解)
\left\{\begin{matrix}c=\frac{b∂+eg}{dg}\text{, }&g\neq 0\text{ and }d\neq 0\\c\in \mathrm{C}\text{, }&\left(g=0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }b=0\right)\text{ or }\left(g=-\frac{b∂}{e}\text{ and }d=0\text{ and }b\neq 0\text{ and }∂\neq 0\right)\end{matrix}\right.
b を解く
\left\{\begin{matrix}b=\frac{g\left(cd-e\right)}{∂}\text{, }&∂\neq 0\\b\in \mathrm{R}\text{, }&\left(c=\frac{e}{d}\text{ and }d\neq 0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }∂=0\right)\end{matrix}\right.
c を解く
\left\{\begin{matrix}c=\frac{b∂+eg}{dg}\text{, }&g\neq 0\text{ and }d\neq 0\\c\in \mathrm{R}\text{, }&\left(g=0\text{ and }∂=0\right)\text{ or }\left(g=0\text{ and }b=0\right)\text{ or }\left(g=-\frac{b∂}{e}\text{ and }d=0\text{ and }b\neq 0\text{ and }∂\neq 0\right)\end{matrix}\right.
共有
クリップボードにコピー済み
∂b=cdg-eg
すべての変数項が左辺にくるように辺を入れ替えます。
\frac{∂b}{∂}=\frac{g\left(cd-e\right)}{∂}
両辺を ∂ で除算します。
b=\frac{g\left(cd-e\right)}{∂}
∂ で除算すると、∂ での乗算を元に戻します。
cdg=∂b+eg
eg を両辺に追加します。
dgc=b∂+eg
方程式は標準形です。
\frac{dgc}{dg}=\frac{b∂+eg}{dg}
両辺を dg で除算します。
c=\frac{b∂+eg}{dg}
dg で除算すると、dg での乗算を元に戻します。
∂b=cdg-eg
すべての変数項が左辺にくるように辺を入れ替えます。
\frac{∂b}{∂}=\frac{g\left(cd-e\right)}{∂}
両辺を ∂ で除算します。
b=\frac{g\left(cd-e\right)}{∂}
∂ で除算すると、∂ での乗算を元に戻します。
cdg=∂b+eg
eg を両辺に追加します。
dgc=b∂+eg
方程式は標準形です。
\frac{dgc}{dg}=\frac{b∂+eg}{dg}
両辺を dg で除算します。
c=\frac{b∂+eg}{dg}
dg で除算すると、dg での乗算を元に戻します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}