因数
a\left(x-2\right)\left(x+6\right)
計算
a\left(x-2\right)\left(x+6\right)
グラフ
共有
クリップボードにコピー済み
a\left(x^{2}+4x-12\right)
a をくくり出します。
p+q=4 pq=1\left(-12\right)=-12
x^{2}+4x-12 を検討してください。 グループ化によって式を因数分解します。まず、式を x^{2}+px+qx-12 として書き換える必要があります。 p と q を検索するには、解決するシステムをセットアップします。
-1,12 -2,6 -3,4
pq は負の値なので、p と q の符号は逆になります。 p+q は正の値なので、正の数の方が負の数よりも絶対値が大きいです。 積が -12 になる整数の組み合わせをすべて一覧表示します。
-1+12=11 -2+6=4 -3+4=1
各組み合わせの和を計算します。
p=-2 q=6
解は和が 4 になる組み合わせです。
\left(x^{2}-2x\right)+\left(6x-12\right)
x^{2}+4x-12 を \left(x^{2}-2x\right)+\left(6x-12\right) に書き換えます。
x\left(x-2\right)+6\left(x-2\right)
1 番目のグループの x と 2 番目のグループの 6 をくくり出します。
\left(x-2\right)\left(x+6\right)
分配特性を使用して一般項 x-2 を除外します。
a\left(x-2\right)\left(x+6\right)
完全な因数分解された式を書き換えます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}