a を解く
a=-\frac{2\left(8n-13\right)}{n^{2}}
n\neq 0
n を解く (複素数の解)
\left\{\begin{matrix}n=\frac{\sqrt{2\left(13a+32\right)}-8}{a}\text{; }n=-\frac{\sqrt{2\left(13a+32\right)}+8}{a}\text{, }&a\neq 0\\n=\frac{13}{8}\text{, }&a=0\end{matrix}\right.
n を解く
\left\{\begin{matrix}n=\frac{\sqrt{2\left(13a+32\right)}-8}{a}\text{; }n=-\frac{\sqrt{2\left(13a+32\right)}+8}{a}\text{, }&a\neq 0\text{ and }a\geq -\frac{32}{13}\\n=\frac{13}{8}\text{, }&a=0\end{matrix}\right.
共有
クリップボードにコピー済み
an^{2}-26=-16n
両辺から 16n を減算します。 ゼロから何かを引くとその負の数になります。
an^{2}=-16n+26
26 を両辺に追加します。
n^{2}a=26-16n
方程式は標準形です。
\frac{n^{2}a}{n^{2}}=\frac{26-16n}{n^{2}}
両辺を n^{2} で除算します。
a=\frac{26-16n}{n^{2}}
n^{2} で除算すると、n^{2} での乗算を元に戻します。
a=\frac{2\left(13-8n\right)}{n^{2}}
-16n+26 を n^{2} で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}