a を解く (複素数の解)
a=b^{x}+121
b を解く (複素数の解)
b=e^{\frac{Im(x)arg(a-121)+iRe(x)arg(a-121)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|a-121|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
a を解く
a=b^{x}+121
\left(b<0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(b=0\text{ and }x>0\right)\text{ or }b>0
b を解く
\left\{\begin{matrix}b=\left(a-121\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }a<121\text{ and }\left(a-121\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\left(a-121\right)^{\frac{1}{x}}<0\text{ and }a>121\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(a=121\text{ and }x>0\right)\text{ or }\left(\left(a-121\right)^{\frac{1}{x}}>0\text{ and }a>121\text{ and }x\neq 0\right)\\b=-\left(a-121\right)^{\frac{1}{x}}\text{, }&\left(a<121\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(a-121\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(a>121\text{ and }x\neq 0\text{ and }\left(a-121\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }a=121\text{ and }x>0\right)\text{ or }\left(a>121\text{ and }x\neq 0\text{ and }\left(a-121\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\\b\neq 0\text{, }&x=0\text{ and }a=122\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}