メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-5 ab=2\left(-3\right)=-6
グループ化によって式を因数分解します。まず、式を 2x^{2}+ax+bx-3 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-6 2,-3
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -6 になる整数の組み合わせをすべて一覧表示します。
1-6=-5 2-3=-1
各組み合わせの和を計算します。
a=-6 b=1
解は和が -5 になる組み合わせです。
\left(2x^{2}-6x\right)+\left(x-3\right)
2x^{2}-5x-3 を \left(2x^{2}-6x\right)+\left(x-3\right) に書き換えます。
2x\left(x-3\right)+x-3
2x の 2x^{2}-6x を除外します。
\left(x-3\right)\left(2x+1\right)
分配特性を使用して一般項 x-3 を除外します。
2x^{2}-5x-3=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5 を 2 乗します。
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 と 2 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 と -3 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
25 を 24 に加算します。
x=\frac{-\left(-5\right)±7}{2\times 2}
49 の平方根をとります。
x=\frac{5±7}{2\times 2}
-5 の反数は 5 です。
x=\frac{5±7}{4}
2 と 2 を乗算します。
x=\frac{12}{4}
± が正の時の方程式 x=\frac{5±7}{4} の解を求めます。 5 を 7 に加算します。
x=3
12 を 4 で除算します。
x=-\frac{2}{4}
± が負の時の方程式 x=\frac{5±7}{4} の解を求めます。 5 から 7 を減算します。
x=-\frac{1}{2}
2 を開いて消去して、分数 \frac{-2}{4} を約分します。
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 3 を x_{2} に -\frac{1}{2} を代入します。
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
すべての p-\left(-q\right) の形式の式を p+q の形式に簡単にします。
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
公分母を求めて分子を加算すると、\frac{1}{2} を x に加算します。次に、可能であれば分数を約分します。
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
2 と 2 の最大公約数 2 で約分します。