P を解く
\left\{\begin{matrix}P=-\frac{20-60y}{13rx}\text{, }&x\neq 0\text{ and }r\neq 0\\P\in \mathrm{R}\text{, }&\left(r=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
r を解く
\left\{\begin{matrix}r=-\frac{20-60y}{13Px}\text{, }&x\neq 0\text{ and }P\neq 0\\r\in \mathrm{R}\text{, }&\left(P=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
共有
クリップボードにコピー済み
P\times 1.3rx-6y+2=0
方程式の両辺に 2 を乗算します。
P\times 1.3rx+2=6y
6y を両辺に追加します。 0 に何を足しても結果は変わりません。
P\times 1.3rx=6y-2
両辺から 2 を減算します。
\frac{13rx}{10}P=6y-2
方程式は標準形です。
\frac{10\times \frac{13rx}{10}P}{13rx}=\frac{10\left(6y-2\right)}{13rx}
両辺を 1.3rx で除算します。
P=\frac{10\left(6y-2\right)}{13rx}
1.3rx で除算すると、1.3rx での乗算を元に戻します。
P=\frac{20\left(3y-1\right)}{13rx}
6y-2 を 1.3rx で除算します。
P\times 1.3rx-6y+2=0
方程式の両辺に 2 を乗算します。
P\times 1.3rx+2=6y
6y を両辺に追加します。 0 に何を足しても結果は変わりません。
P\times 1.3rx=6y-2
両辺から 2 を減算します。
\frac{13Px}{10}r=6y-2
方程式は標準形です。
\frac{10\times \frac{13Px}{10}r}{13Px}=\frac{10\left(6y-2\right)}{13Px}
両辺を 1.3Px で除算します。
r=\frac{10\left(6y-2\right)}{13Px}
1.3Px で除算すると、1.3Px での乗算を元に戻します。
r=\frac{20\left(3y-1\right)}{13Px}
6y-2 を 1.3Px で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}