v を解く
v=-\left(x+8\right)
x を解く
x=-\left(v+8\right)
グラフ
共有
クリップボードにコピー済み
-v=8+x
すべての変数項が左辺にくるように辺を入れ替えます。
-v=x+8
方程式は標準形です。
\frac{-v}{-1}=\frac{x+8}{-1}
両辺を -1 で除算します。
v=\frac{x+8}{-1}
-1 で除算すると、-1 での乗算を元に戻します。
v=-\left(x+8\right)
8+x を -1 で除算します。
x=-v-8
両辺から 8 を減算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}