因数
7\left(y-1\right)\left(y+5\right)y^{4}
計算
7\left(y-1\right)\left(y+5\right)y^{4}
グラフ
共有
クリップボードにコピー済み
7\left(y^{6}+4y^{5}-5y^{4}\right)
7 をくくり出します。
y^{4}\left(y^{2}+4y-5\right)
y^{6}+4y^{5}-5y^{4} を検討してください。 y^{4} をくくり出します。
a+b=4 ab=1\left(-5\right)=-5
y^{2}+4y-5 を検討してください。 グループ化によって式を因数分解します。まず、式を y^{2}+ay+by-5 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
a=-1 b=5
ab は負の値なので、a と b の符号は逆になります。 a+b は正の値なので、正の数の方が負の数よりも絶対値が大きいです。 唯一の組み合わせが連立方程式の解です。
\left(y^{2}-y\right)+\left(5y-5\right)
y^{2}+4y-5 を \left(y^{2}-y\right)+\left(5y-5\right) に書き換えます。
y\left(y-1\right)+5\left(y-1\right)
1 番目のグループの y と 2 番目のグループの 5 をくくり出します。
\left(y-1\right)\left(y+5\right)
分配特性を使用して一般項 y-1 を除外します。
7y^{4}\left(y-1\right)\left(y+5\right)
完全な因数分解された式を書き換えます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}