メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

\left(x+3\right)\left(-x^{2}+3x-2\right)
有理根定理では、多項式のすべての有理根が \frac{p}{q} の形式になり、p は定数項 -6 を除算し、q は主係数 -1 を除算します。 そのような根の 1 つが -3 です。多項式を x+3 で除算して因数分解します。
a+b=3 ab=-\left(-2\right)=2
-x^{2}+3x-2 を検討してください。 グループ化によって式を因数分解します。まず、式を -x^{2}+ax+bx-2 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
a=2 b=1
ab は正の値なので、a と b の符号は同じです。 a+b は正の値なので、a と b はどちらも正の値です。 唯一の組み合わせが連立方程式の解です。
\left(-x^{2}+2x\right)+\left(x-2\right)
-x^{2}+3x-2 を \left(-x^{2}+2x\right)+\left(x-2\right) に書き換えます。
-x\left(x-2\right)+x-2
-x の -x^{2}+2x を除外します。
\left(x-2\right)\left(-x+1\right)
分配特性を使用して一般項 x-2 を除外します。
\left(x-2\right)\left(-x+1\right)\left(x+3\right)
完全な因数分解された式を書き換えます。