メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-5 ab=7\left(-2\right)=-14
グループ化によって式を因数分解します。まず、式を 7x^{2}+ax+bx-2 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-14 2,-7
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -14 になる整数の組み合わせをすべて一覧表示します。
1-14=-13 2-7=-5
各組み合わせの和を計算します。
a=-7 b=2
解は和が -5 になる組み合わせです。
\left(7x^{2}-7x\right)+\left(2x-2\right)
7x^{2}-5x-2 を \left(7x^{2}-7x\right)+\left(2x-2\right) に書き換えます。
7x\left(x-1\right)+2\left(x-1\right)
1 番目のグループの 7x と 2 番目のグループの 2 をくくり出します。
\left(x-1\right)\left(7x+2\right)
分配特性を使用して一般項 x-1 を除外します。
7x^{2}-5x-2=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7\left(-2\right)}}{2\times 7}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7\left(-2\right)}}{2\times 7}
-5 を 2 乗します。
x=\frac{-\left(-5\right)±\sqrt{25-28\left(-2\right)}}{2\times 7}
-4 と 7 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2\times 7}
-28 と -2 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{81}}{2\times 7}
25 を 56 に加算します。
x=\frac{-\left(-5\right)±9}{2\times 7}
81 の平方根をとります。
x=\frac{5±9}{2\times 7}
-5 の反数は 5 です。
x=\frac{5±9}{14}
2 と 7 を乗算します。
x=\frac{14}{14}
± が正の時の方程式 x=\frac{5±9}{14} の解を求めます。 5 を 9 に加算します。
x=1
14 を 14 で除算します。
x=-\frac{4}{14}
± が負の時の方程式 x=\frac{5±9}{14} の解を求めます。 5 から 9 を減算します。
x=-\frac{2}{7}
2 を開いて消去して、分数 \frac{-4}{14} を約分します。
7x^{2}-5x-2=7\left(x-1\right)\left(x-\left(-\frac{2}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 1 を x_{2} に -\frac{2}{7} を代入します。
7x^{2}-5x-2=7\left(x-1\right)\left(x+\frac{2}{7}\right)
すべての p-\left(-q\right) の形式の式を p+q の形式に簡単にします。
7x^{2}-5x-2=7\left(x-1\right)\times \frac{7x+2}{7}
公分母を求めて分子を加算すると、\frac{2}{7} を x に加算します。次に、可能であれば分数を約分します。
7x^{2}-5x-2=\left(x-1\right)\left(7x+2\right)
7 と 7 の最大公約数 7 で約分します。