6 \frac { 3 } { 8 } + 9,5
並べ替え
5,\frac{123}{8}
計算
\frac{123}{8},5
共有
クリップボードにコピー済み
sort(\frac{48+3}{8}+9,5)
6 と 8 を乗算して 48 を求めます。
sort(\frac{51}{8}+9,5)
48 と 3 を加算して 51 を求めます。
sort(\frac{51}{8}+\frac{72}{8},5)
9 を分数 \frac{72}{8} に変換します。
sort(\frac{51+72}{8},5)
\frac{51}{8} と \frac{72}{8} は分母が同じなので、分子を足して加算します。
sort(\frac{123}{8},5)
51 と 72 を加算して 123 を求めます。
\frac{123}{8},5
リスト \frac{123}{8},5 の小数を分数に変換します。
\frac{123}{8}
リストを並べ替えるには、1 つの要素 \frac{123}{8} から開始します。
5,\frac{123}{8}
5 を新しいリスト内の適切な場所に挿入します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}