メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

5x^{2}-6x-2=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5\left(-2\right)}}{2\times 5}
-6 を 2 乗します。
x=\frac{-\left(-6\right)±\sqrt{36-20\left(-2\right)}}{2\times 5}
-4 と 5 を乗算します。
x=\frac{-\left(-6\right)±\sqrt{36+40}}{2\times 5}
-20 と -2 を乗算します。
x=\frac{-\left(-6\right)±\sqrt{76}}{2\times 5}
36 を 40 に加算します。
x=\frac{-\left(-6\right)±2\sqrt{19}}{2\times 5}
76 の平方根をとります。
x=\frac{6±2\sqrt{19}}{2\times 5}
-6 の反数は 6 です。
x=\frac{6±2\sqrt{19}}{10}
2 と 5 を乗算します。
x=\frac{2\sqrt{19}+6}{10}
± が正の時の方程式 x=\frac{6±2\sqrt{19}}{10} の解を求めます。 6 を 2\sqrt{19} に加算します。
x=\frac{\sqrt{19}+3}{5}
6+2\sqrt{19} を 10 で除算します。
x=\frac{6-2\sqrt{19}}{10}
± が負の時の方程式 x=\frac{6±2\sqrt{19}}{10} の解を求めます。 6 から 2\sqrt{19} を減算します。
x=\frac{3-\sqrt{19}}{5}
6-2\sqrt{19} を 10 で除算します。
5x^{2}-6x-2=5\left(x-\frac{\sqrt{19}+3}{5}\right)\left(x-\frac{3-\sqrt{19}}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に \frac{3+\sqrt{19}}{5} を x_{2} に \frac{3-\sqrt{19}}{5} を代入します。