x を解く
x=-\frac{1}{11}\approx -0.090909091
グラフ
共有
クリップボードにコピー済み
3x-24-5\left(7x-6\right)=6\left(3x+2\right)-5\left(6x+1\right)-9x
分配則を使用して 3 と x-8 を乗算します。
3x-24-35x+30=6\left(3x+2\right)-5\left(6x+1\right)-9x
分配則を使用して -5 と 7x-6 を乗算します。
-32x-24+30=6\left(3x+2\right)-5\left(6x+1\right)-9x
3x と -35x をまとめて -32x を求めます。
-32x+6=6\left(3x+2\right)-5\left(6x+1\right)-9x
-24 と 30 を加算して 6 を求めます。
-32x+6=18x+12-5\left(6x+1\right)-9x
分配則を使用して 6 と 3x+2 を乗算します。
-32x+6=18x+12-30x-5-9x
分配則を使用して -5 と 6x+1 を乗算します。
-32x+6=-12x+12-5-9x
18x と -30x をまとめて -12x を求めます。
-32x+6=-12x+7-9x
12 から 5 を減算して 7 を求めます。
-32x+6=-21x+7
-12x と -9x をまとめて -21x を求めます。
-32x+6+21x=7
21x を両辺に追加します。
-11x+6=7
-32x と 21x をまとめて -11x を求めます。
-11x=7-6
両辺から 6 を減算します。
-11x=1
7 から 6 を減算して 1 を求めます。
x=\frac{1}{-11}
両辺を -11 で除算します。
x=-\frac{1}{11}
分数 \frac{1}{-11} は負の符号を削除することで -\frac{1}{11} と書き換えることができます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}