メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

3\left(x^{2}-5x+6\right)
3 をくくり出します。
a+b=-5 ab=1\times 6=6
x^{2}-5x+6 を検討してください。 グループ化によって式を因数分解します。まず、式を x^{2}+ax+bx+6 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
-1,-6 -2,-3
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 6 になる整数の組み合わせをすべて一覧表示します。
-1-6=-7 -2-3=-5
各組み合わせの和を計算します。
a=-3 b=-2
解は和が -5 になる組み合わせです。
\left(x^{2}-3x\right)+\left(-2x+6\right)
x^{2}-5x+6 を \left(x^{2}-3x\right)+\left(-2x+6\right) に書き換えます。
x\left(x-3\right)-2\left(x-3\right)
1 番目のグループの x と 2 番目のグループの -2 をくくり出します。
\left(x-3\right)\left(x-2\right)
分配特性を使用して一般項 x-3 を除外します。
3\left(x-3\right)\left(x-2\right)
完全な因数分解された式を書き換えます。
3x^{2}-15x+18=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\times 18}}{2\times 3}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\times 18}}{2\times 3}
-15 を 2 乗します。
x=\frac{-\left(-15\right)±\sqrt{225-12\times 18}}{2\times 3}
-4 と 3 を乗算します。
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 3}
-12 と 18 を乗算します。
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 3}
225 を -216 に加算します。
x=\frac{-\left(-15\right)±3}{2\times 3}
9 の平方根をとります。
x=\frac{15±3}{2\times 3}
-15 の反数は 15 です。
x=\frac{15±3}{6}
2 と 3 を乗算します。
x=\frac{18}{6}
± が正の時の方程式 x=\frac{15±3}{6} の解を求めます。 15 を 3 に加算します。
x=3
18 を 6 で除算します。
x=\frac{12}{6}
± が負の時の方程式 x=\frac{15±3}{6} の解を求めます。 15 から 3 を減算します。
x=2
12 を 6 で除算します。
3x^{2}-15x+18=3\left(x-3\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 3 を x_{2} に 2 を代入します。