3 d y + ( 3 y - e ^ { 2 x } ) d x = 0
d を解く (複素数の解)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&y=\frac{xe^{2x}}{3\left(x+1\right)}\text{ and }x\neq -1\end{matrix}\right.
d を解く
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y=\frac{xe^{2x}}{3\left(x+1\right)}\text{ and }x\neq -1\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
3dy+\left(3yd-e^{2x}d\right)x=0
分配則を使用して 3y-e^{2x} と d を乗算します。
3dy+3ydx-e^{2x}dx=0
分配則を使用して 3yd-e^{2x}d と x を乗算します。
\left(3y+3yx-e^{2x}x\right)d=0
d を含むすべての項をまとめます。
\left(3xy-xe^{2x}+3y\right)d=0
方程式は標準形です。
d=0
0 を 3y+3yx-e^{2x}x で除算します。
3dy+\left(3yd-e^{2x}d\right)x=0
分配則を使用して 3y-e^{2x} と d を乗算します。
3dy+3ydx-e^{2x}dx=0
分配則を使用して 3yd-e^{2x}d と x を乗算します。
\left(3y+3yx-e^{2x}x\right)d=0
d を含むすべての項をまとめます。
\left(3xy-xe^{2x}+3y\right)d=0
方程式は標準形です。
d=0
0 を 3y+3yx-e^{2x}x で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}