x を解く
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1.042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1.042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0.195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0.195816067
グラフ
共有
クリップボードにコピー済み
24x^{2}x^{2}+1=27x^{2}
0 による除算は定義されていないため、変数 x を 0 と等しくすることはできません。 方程式の両辺に x^{2} を乗算します。
24x^{4}+1=27x^{2}
同じ底の累乗を乗算するには、分子を加算します。2 と 2 を加算して 4 を取得します。
24x^{4}+1-27x^{2}=0
両辺から 27x^{2} を減算します。
24t^{2}-27t+1=0
x^{2} に t を代入します。
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式の a に 24、b に -27、c に 1 を代入します。
t=\frac{27±\sqrt{633}}{48}
計算を行います。
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
± がプラスで ± がマイナスであるときに、方程式の t=\frac{27±\sqrt{633}}{48} を計算します。
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
x=t^{2} なので、各 t について x=±\sqrt{t} の値を求めることによって解を得ることができます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}