計算
x^{3}-3x^{2}+3x+3
x で微分する
3\left(x-1\right)^{2}
グラフ
共有
クリップボードにコピー済み
2x^{2}+2x^{3}-x-x^{3}+4x+3-5x^{2}
-x^{3} と 3x^{3} をまとめて 2x^{3} を求めます。
2x^{2}+x^{3}-x+4x+3-5x^{2}
2x^{3} と -x^{3} をまとめて x^{3} を求めます。
2x^{2}+x^{3}+3x+3-5x^{2}
-x と 4x をまとめて 3x を求めます。
-3x^{2}+x^{3}+3x+3
2x^{2} と -5x^{2} をまとめて -3x^{2} を求めます。
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+2x^{3}-x-x^{3}+4x+3-5x^{2})
-x^{3} と 3x^{3} をまとめて 2x^{3} を求めます。
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+x^{3}-x+4x+3-5x^{2})
2x^{3} と -x^{3} をまとめて x^{3} を求めます。
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+x^{3}+3x+3-5x^{2})
-x と 4x をまとめて 3x を求めます。
\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{2}+x^{3}+3x+3)
2x^{2} と -5x^{2} をまとめて -3x^{2} を求めます。
2\left(-3\right)x^{2-1}+3x^{3-1}+3x^{1-1}
多項式の微分係数は、その項の微分係数の和です。定数項の微分係数は 0 です。ax^{n} の微分係数は nax^{n-1} です。
-6x^{2-1}+3x^{3-1}+3x^{1-1}
2 と -3 を乗算します。
-6x^{1}+3x^{3-1}+3x^{1-1}
2 から 1 を減算します。
-6x^{1}+3x^{2}+3x^{1-1}
3 から 1 を減算します。
-6x^{1}+3x^{2}+3x^{0}
1 から 1 を減算します。
-6x+3x^{2}+3x^{0}
任意の項 t の場合は、t^{1}=t です。
-6x+3x^{2}+3\times 1
0 を除く任意の項 t の場合は、t^{0}=1 です。
-6x+3x^{2}+3
任意の項 t の場合は、t\times 1=t と 1t=t です。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}