計算
\frac{13721}{70}\approx 196.014285714
因数
\frac{13721}{2 \cdot 5 \cdot 7} = 196\frac{1}{70} = 196.0142857142857
共有
クリップボードにコピー済み
196-\frac{2}{7}\left(0.2-0.25\right)
1.2 から 1 を減算して 0.2 を求めます。
196-\frac{2}{7}\left(-0.05\right)
0.2 から 0.25 を減算して -0.05 を求めます。
196-\frac{2}{7}\left(-\frac{1}{20}\right)
10 進数 -0.05 をその分数 -\frac{5}{100} に変換します。 5 を開いて消去して、分数 -\frac{5}{100} を約分します。
196-\frac{2\left(-1\right)}{7\times 20}
分子と分子、分母と分母を乗算して、\frac{2}{7} と -\frac{1}{20} を乗算します。
196-\frac{-2}{140}
分数 \frac{2\left(-1\right)}{7\times 20} で乗算を行います。
196-\left(-\frac{1}{70}\right)
2 を開いて消去して、分数 \frac{-2}{140} を約分します。
196+\frac{1}{70}
-\frac{1}{70} の反数は \frac{1}{70} です。
\frac{13720}{70}+\frac{1}{70}
196 を分数 \frac{13720}{70} に変換します。
\frac{13720+1}{70}
\frac{13720}{70} と \frac{1}{70} は分母が同じなので、分子を足して加算します。
\frac{13721}{70}
13720 と 1 を加算して 13721 を求めます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}