メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

7\left(2x-3x^{2}\right)
7 をくくり出します。
x\left(2-3x\right)
2x-3x^{2} を検討してください。 x をくくり出します。
7x\left(-3x+2\right)
完全な因数分解された式を書き換えます。
-21x^{2}+14x=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-14±\sqrt{14^{2}}}{2\left(-21\right)}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-14±14}{2\left(-21\right)}
14^{2} の平方根をとります。
x=\frac{-14±14}{-42}
2 と -21 を乗算します。
x=\frac{0}{-42}
± が正の時の方程式 x=\frac{-14±14}{-42} の解を求めます。 -14 を 14 に加算します。
x=0
0 を -42 で除算します。
x=-\frac{28}{-42}
± が負の時の方程式 x=\frac{-14±14}{-42} の解を求めます。 -14 から 14 を減算します。
x=\frac{2}{3}
14 を開いて消去して、分数 \frac{-28}{-42} を約分します。
-21x^{2}+14x=-21x\left(x-\frac{2}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 0 を x_{2} に \frac{2}{3} を代入します。
-21x^{2}+14x=-21x\times \frac{-3x+2}{-3}
x から \frac{2}{3} を減算するには、公分母を求めて分子を減算します。次に、可能であれば分数を約分します。
-21x^{2}+14x=7x\left(-3x+2\right)
-21 と -3 の最大公約数 3 で約分します。