x を解く
x=8
グラフ
共有
クリップボードにコピー済み
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
0 による除算は定義されていないため、変数 x を -2,2 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-2\right)\left(x+2\right) (x-2,x^{2}-4 の最小公倍数) で乗算します。
x^{2}-4-\left(x+2\right)\times 5=x+2
\left(x-2\right)\left(x+2\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。 2 を 2 乗します。
x^{2}-4-\left(5x+10\right)=x+2
分配則を使用して x+2 と 5 を乗算します。
x^{2}-4-5x-10=x+2
5x+10 の反数を求めるには、各項の半数を求めます。
x^{2}-14-5x=x+2
-4 から 10 を減算して -14 を求めます。
x^{2}-14-5x-x=2
両辺から x を減算します。
x^{2}-14-6x=2
-5x と -x をまとめて -6x を求めます。
x^{2}-14-6x-2=0
両辺から 2 を減算します。
x^{2}-16-6x=0
-14 から 2 を減算して -16 を求めます。
x^{2}-6x-16=0
多項式を再整理して標準形にします。項を降べきの順に配置します。
a+b=-6 ab=-16
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-6x-16 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
1,-16 2,-8 4,-4
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -16 になる整数の組み合わせをすべて一覧表示します。
1-16=-15 2-8=-6 4-4=0
各組み合わせの和を計算します。
a=-8 b=2
解は和が -6 になる組み合わせです。
\left(x-8\right)\left(x+2\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=8 x=-2
方程式の解を求めるには、x-8=0 と x+2=0 を解きます。
x=8
変数 x を -2 と等しくすることはできません。
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
0 による除算は定義されていないため、変数 x を -2,2 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-2\right)\left(x+2\right) (x-2,x^{2}-4 の最小公倍数) で乗算します。
x^{2}-4-\left(x+2\right)\times 5=x+2
\left(x-2\right)\left(x+2\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。 2 を 2 乗します。
x^{2}-4-\left(5x+10\right)=x+2
分配則を使用して x+2 と 5 を乗算します。
x^{2}-4-5x-10=x+2
5x+10 の反数を求めるには、各項の半数を求めます。
x^{2}-14-5x=x+2
-4 から 10 を減算して -14 を求めます。
x^{2}-14-5x-x=2
両辺から x を減算します。
x^{2}-14-6x=2
-5x と -x をまとめて -6x を求めます。
x^{2}-14-6x-2=0
両辺から 2 を減算します。
x^{2}-16-6x=0
-14 から 2 を減算して -16 を求めます。
x^{2}-6x-16=0
多項式を再整理して標準形にします。項を降べきの順に配置します。
a+b=-6 ab=1\left(-16\right)=-16
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx-16 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-16 2,-8 4,-4
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -16 になる整数の組み合わせをすべて一覧表示します。
1-16=-15 2-8=-6 4-4=0
各組み合わせの和を計算します。
a=-8 b=2
解は和が -6 になる組み合わせです。
\left(x^{2}-8x\right)+\left(2x-16\right)
x^{2}-6x-16 を \left(x^{2}-8x\right)+\left(2x-16\right) に書き換えます。
x\left(x-8\right)+2\left(x-8\right)
1 番目のグループの x と 2 番目のグループの 2 をくくり出します。
\left(x-8\right)\left(x+2\right)
分配特性を使用して一般項 x-8 を除外します。
x=8 x=-2
方程式の解を求めるには、x-8=0 と x+2=0 を解きます。
x=8
変数 x を -2 と等しくすることはできません。
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
0 による除算は定義されていないため、変数 x を -2,2 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-2\right)\left(x+2\right) (x-2,x^{2}-4 の最小公倍数) で乗算します。
x^{2}-4-\left(x+2\right)\times 5=x+2
\left(x-2\right)\left(x+2\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。 2 を 2 乗します。
x^{2}-4-\left(5x+10\right)=x+2
分配則を使用して x+2 と 5 を乗算します。
x^{2}-4-5x-10=x+2
5x+10 の反数を求めるには、各項の半数を求めます。
x^{2}-14-5x=x+2
-4 から 10 を減算して -14 を求めます。
x^{2}-14-5x-x=2
両辺から x を減算します。
x^{2}-14-6x=2
-5x と -x をまとめて -6x を求めます。
x^{2}-14-6x-2=0
両辺から 2 を減算します。
x^{2}-16-6x=0
-14 から 2 を減算して -16 を求めます。
x^{2}-6x-16=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-16\right)}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -6 を代入し、c に -16 を代入します。
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-16\right)}}{2}
-6 を 2 乗します。
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2}
-4 と -16 を乗算します。
x=\frac{-\left(-6\right)±\sqrt{100}}{2}
36 を 64 に加算します。
x=\frac{-\left(-6\right)±10}{2}
100 の平方根をとります。
x=\frac{6±10}{2}
-6 の反数は 6 です。
x=\frac{16}{2}
± が正の時の方程式 x=\frac{6±10}{2} の解を求めます。 6 を 10 に加算します。
x=8
16 を 2 で除算します。
x=-\frac{4}{2}
± が負の時の方程式 x=\frac{6±10}{2} の解を求めます。 6 から 10 を減算します。
x=-2
-4 を 2 で除算します。
x=8 x=-2
方程式が解けました。
x=8
変数 x を -2 と等しくすることはできません。
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
0 による除算は定義されていないため、変数 x を -2,2 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-2\right)\left(x+2\right) (x-2,x^{2}-4 の最小公倍数) で乗算します。
x^{2}-4-\left(x+2\right)\times 5=x+2
\left(x-2\right)\left(x+2\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。 2 を 2 乗します。
x^{2}-4-\left(5x+10\right)=x+2
分配則を使用して x+2 と 5 を乗算します。
x^{2}-4-5x-10=x+2
5x+10 の反数を求めるには、各項の半数を求めます。
x^{2}-14-5x=x+2
-4 から 10 を減算して -14 を求めます。
x^{2}-14-5x-x=2
両辺から x を減算します。
x^{2}-14-6x=2
-5x と -x をまとめて -6x を求めます。
x^{2}-6x=2+14
14 を両辺に追加します。
x^{2}-6x=16
2 と 14 を加算して 16 を求めます。
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
-6 (x 項の係数) を 2 で除算して -3 を求めます。次に、方程式の両辺に -3 の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-6x+9=16+9
-3 を 2 乗します。
x^{2}-6x+9=25
16 を 9 に加算します。
\left(x-3\right)^{2}=25
因数x^{2}-6x+9。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
方程式の両辺の平方根をとります。
x-3=5 x-3=-5
簡約化します。
x=8 x=-2
方程式の両辺に 3 を加算します。
x=8
変数 x を -2 と等しくすることはできません。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}