x を解く
x\leq -2
グラフ
共有
クリップボードにコピー済み
0.003x+0.4\geq 0.02x+0.434
分配則を使用して 0.1 と 0.03x+4 を乗算します。
0.003x+0.4-0.02x\geq 0.434
両辺から 0.02x を減算します。
-0.017x+0.4\geq 0.434
0.003x と -0.02x をまとめて -0.017x を求めます。
-0.017x\geq 0.434-0.4
両辺から 0.4 を減算します。
-0.017x\geq 0.034
0.434 から 0.4 を減算して 0.034 を求めます。
x\leq \frac{0.034}{-0.017}
両辺を -0.017 で除算します。 -0.017は負の値であるため、不等式の方向が変更されます。
x\leq \frac{34}{-17}
分母と分子の両方に 1000 を乗算して、\frac{0.034}{-0.017} を展開します。
x\leq -2
34 を -17 で除算して -2 を求めます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}