b を解く
b = -\frac{\sqrt{2 {(\sqrt{185} + 5)}}}{2} \approx -3.049710684
b = \frac{\sqrt{2 {(\sqrt{185} + 5)}}}{2} \approx 3.049710684
共有
クリップボードにコピー済み
t^{2}-5t-40=0
b^{2} に t を代入します。
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-40\right)}}{2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式の a に 1、b に -5、c に -40 を代入します。
t=\frac{5±\sqrt{185}}{2}
計算を行います。
t=\frac{\sqrt{185}+5}{2} t=\frac{5-\sqrt{185}}{2}
± がプラスで ± がマイナスであるときに、方程式の t=\frac{5±\sqrt{185}}{2} を計算します。
b=\frac{\sqrt{2\sqrt{185}+10}}{2} b=-\frac{\sqrt{2\sqrt{185}+10}}{2}
b=t^{2} なので、正の t について b=±\sqrt{t} の値を求めることによって解を得ることができます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}