b を解く (複素数の解)
\left\{\begin{matrix}b=\lambda +\frac{5}{\lambda }\text{, }&\lambda \neq 0\\b\in \mathrm{C}\text{, }&\lambda =1\end{matrix}\right.
b を解く
\left\{\begin{matrix}b=\lambda +\frac{5}{\lambda }\text{, }&\lambda \neq 0\\b\in \mathrm{R}\text{, }&\lambda =1\end{matrix}\right.
λ を解く (複素数の解)
\lambda =\frac{-\sqrt{b^{2}-20}+b}{2}
\lambda =1
\lambda =\frac{\sqrt{b^{2}-20}+b}{2}
λ を解く
\left\{\begin{matrix}\\\lambda =1\text{, }&\text{unconditionally}\\\lambda =\frac{\sqrt{b^{2}-20}+b}{2}\text{; }\lambda =\frac{-\sqrt{b^{2}-20}+b}{2}\text{, }&|b|\geq 2\sqrt{5}\end{matrix}\right.
共有
クリップボードにコピー済み
\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
\lambda -1 の反数を求めるには、各項の半数を求めます。
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
分配則を使用して -\lambda +1 と \lambda ^{2}-b\lambda +5 を乗算します。
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
\lambda ^{3} を両辺に追加します。 0 に何を足しても結果は変わりません。
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
5\lambda を両辺に追加します。
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
両辺から \lambda ^{2} を減算します。
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
両辺から 5 を減算します。
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
b を含むすべての項をまとめます。
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
方程式は標準形です。
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
両辺を \lambda ^{2}-\lambda で除算します。
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
\lambda ^{2}-\lambda で除算すると、\lambda ^{2}-\lambda での乗算を元に戻します。
b=\lambda +\frac{5}{\lambda }
\left(-1+\lambda \right)\left(5+\lambda ^{2}\right) を \lambda ^{2}-\lambda で除算します。
\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
\lambda -1 の反数を求めるには、各項の半数を求めます。
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
分配則を使用して -\lambda +1 と \lambda ^{2}-b\lambda +5 を乗算します。
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
\lambda ^{3} を両辺に追加します。 0 に何を足しても結果は変わりません。
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
5\lambda を両辺に追加します。
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
両辺から \lambda ^{2} を減算します。
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
両辺から 5 を減算します。
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
b を含むすべての項をまとめます。
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
方程式は標準形です。
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
両辺を \lambda ^{2}-\lambda で除算します。
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
\lambda ^{2}-\lambda で除算すると、\lambda ^{2}-\lambda での乗算を元に戻します。
b=\lambda +\frac{5}{\lambda }
\left(-1+\lambda \right)\left(5+\lambda ^{2}\right) を \lambda ^{2}-\lambda で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}