計算
5
因数
5
共有
クリップボードにコピー済み
-\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(\sqrt{2}-1\right)^{2} を展開します。
-\frac{2-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} の平方は 2 です。
-\frac{3-2\sqrt{2}}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
2 と 1 を加算して 3 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
分子と分母に \sqrt{2} を乗算して、\frac{3-2\sqrt{2}}{4\sqrt{2}} の分母を有理化します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\times 2}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} の平方は 2 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
4 と 2 を乗算して 8 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\sqrt{5}+\sqrt{3}\right)^{2} を展開します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} の平方は 5 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} と \sqrt{3} を乗算するには、平方根の中の数値を乗算します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+3}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{3} の平方は 3 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{8+2\sqrt{15}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
5 と 3 を加算して 8 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
分子と分母に \sqrt{15} を乗算して、\frac{8+2\sqrt{15}}{\sqrt{15}} の分母を有理化します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{15} の平方は 15 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\sqrt{2}+1\right)^{2} を展開します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{2+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} の平方は 2 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{3+2\sqrt{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
2 と 1 を加算して 3 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
分子と分母に \sqrt{2} を乗算して、\frac{3+2\sqrt{2}}{4\sqrt{2}} の分母を有理化します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\times 2}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} の平方は 2 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
4 と 2 を乗算して 8 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(\sqrt{5}-\sqrt{3}\right)^{2} を展開します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} の平方は 5 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} と \sqrt{3} を乗算するには、平方根の中の数値を乗算します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+3}{\sqrt{15}}
\sqrt{3} の平方は 3 です。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{8-2\sqrt{15}}{\sqrt{15}}
5 と 3 を加算して 8 を求めます。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
分子と分母に \sqrt{15} を乗算して、\frac{8-2\sqrt{15}}{\sqrt{15}} の分母を有理化します。
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
\sqrt{15} の平方は 15 です。
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120}+\frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
式の加算または減算を行うには、式を展開して分母を同じにします。 8 と 15 の最小公倍数は 120 です。 -\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8} と \frac{15}{15} を乗算します。 \frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15} と \frac{8}{8} を乗算します。
\frac{-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120} と \frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120} は分母が同じなので、分子を足して加算します。
\frac{-45\sqrt{2}+60+64\sqrt{15}+240}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15} で乗算を行います。
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+60+64\sqrt{15}+240 の計算を行います。
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
式の加算または減算を行うには、式を展開して分母を同じにします。 120 と 8 の最小公倍数は 120 です。 \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8} と \frac{15}{15} を乗算します。
\frac{-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120} と \frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120} は分母が同じなので、分子を足して加算します。
\frac{-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2} で乗算を行います。
\frac{360+64\sqrt{15}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60 の計算を行います。
\frac{360+64\sqrt{15}}{120}-\frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
式の加算または減算を行うには、式を展開して分母を同じにします。 120 と 15 の最小公倍数は 120 です。 \frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15} と \frac{8}{8} を乗算します。
\frac{360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
\frac{360+64\sqrt{15}}{120} と \frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120} は分母が同じなので、分子を引いて減算します。
\frac{360+64\sqrt{15}-64\sqrt{15}+240}{120}
360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15} で乗算を行います。
\frac{600}{120}
360+64\sqrt{15}-64\sqrt{15}+240 の計算を行います。
5
600 を 120 で除算して 5 を求めます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}