メインコンテンツに移動します。
x を解く (複素数の解)
Tick mark Image
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

\left(x^{2}+3x+2\right)\left(x+3\right)=x^{3}+6x^{2}+11x+6
分配則を使用して x+1 と x+2 を乗算して同類項をまとめます。
x^{3}+6x^{2}+11x+6=x^{3}+6x^{2}+11x+6
分配則を使用して x^{2}+3x+2 と x+3 を乗算して同類項をまとめます。
x^{3}+6x^{2}+11x+6-x^{3}=6x^{2}+11x+6
両辺から x^{3} を減算します。
6x^{2}+11x+6=6x^{2}+11x+6
x^{3} と -x^{3} をまとめて 0 を求めます。
6x^{2}+11x+6-6x^{2}=11x+6
両辺から 6x^{2} を減算します。
11x+6=11x+6
6x^{2} と -6x^{2} をまとめて 0 を求めます。
11x+6-11x=6
両辺から 11x を減算します。
6=6
11x と -11x をまとめて 0 を求めます。
\text{true}
6 と 6 を比較します。
x\in \mathrm{C}
これは任意の x で True です。
\left(x^{2}+3x+2\right)\left(x+3\right)=x^{3}+6x^{2}+11x+6
分配則を使用して x+1 と x+2 を乗算して同類項をまとめます。
x^{3}+6x^{2}+11x+6=x^{3}+6x^{2}+11x+6
分配則を使用して x^{2}+3x+2 と x+3 を乗算して同類項をまとめます。
x^{3}+6x^{2}+11x+6-x^{3}=6x^{2}+11x+6
両辺から x^{3} を減算します。
6x^{2}+11x+6=6x^{2}+11x+6
x^{3} と -x^{3} をまとめて 0 を求めます。
6x^{2}+11x+6-6x^{2}=11x+6
両辺から 6x^{2} を減算します。
11x+6=11x+6
6x^{2} と -6x^{2} をまとめて 0 を求めます。
11x+6-11x=6
両辺から 11x を減算します。
6=6
11x と -11x をまとめて 0 を求めます。
\text{true}
6 と 6 を比較します。
x\in \mathrm{R}
これは任意の x で True です。