メインコンテンツに移動します。
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

x^{2}-10x+25-9=0
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-5\right)^{2} を展開します。
x^{2}-10x+16=0
25 から 9 を減算して 16 を求めます。
a+b=-10 ab=16
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-10x+16 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
-1,-16 -2,-8 -4,-4
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 16 になる整数の組み合わせをすべて一覧表示します。
-1-16=-17 -2-8=-10 -4-4=-8
各組み合わせの和を計算します。
a=-8 b=-2
解は和が -10 になる組み合わせです。
\left(x-8\right)\left(x-2\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=8 x=2
方程式の解を求めるには、x-8=0 と x-2=0 を解きます。
x^{2}-10x+25-9=0
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-5\right)^{2} を展開します。
x^{2}-10x+16=0
25 から 9 を減算して 16 を求めます。
a+b=-10 ab=1\times 16=16
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx+16 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
-1,-16 -2,-8 -4,-4
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 16 になる整数の組み合わせをすべて一覧表示します。
-1-16=-17 -2-8=-10 -4-4=-8
各組み合わせの和を計算します。
a=-8 b=-2
解は和が -10 になる組み合わせです。
\left(x^{2}-8x\right)+\left(-2x+16\right)
x^{2}-10x+16 を \left(x^{2}-8x\right)+\left(-2x+16\right) に書き換えます。
x\left(x-8\right)-2\left(x-8\right)
1 番目のグループの x と 2 番目のグループの -2 をくくり出します。
\left(x-8\right)\left(x-2\right)
分配特性を使用して一般項 x-8 を除外します。
x=8 x=2
方程式の解を求めるには、x-8=0 と x-2=0 を解きます。
x^{2}-10x+25-9=0
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-5\right)^{2} を展開します。
x^{2}-10x+16=0
25 から 9 を減算して 16 を求めます。
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 16}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -10 を代入し、c に 16 を代入します。
x=\frac{-\left(-10\right)±\sqrt{100-4\times 16}}{2}
-10 を 2 乗します。
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2}
-4 と 16 を乗算します。
x=\frac{-\left(-10\right)±\sqrt{36}}{2}
100 を -64 に加算します。
x=\frac{-\left(-10\right)±6}{2}
36 の平方根をとります。
x=\frac{10±6}{2}
-10 の反数は 10 です。
x=\frac{16}{2}
± が正の時の方程式 x=\frac{10±6}{2} の解を求めます。 10 を 6 に加算します。
x=8
16 を 2 で除算します。
x=\frac{4}{2}
± が負の時の方程式 x=\frac{10±6}{2} の解を求めます。 10 から 6 を減算します。
x=2
4 を 2 で除算します。
x=8 x=2
方程式が解けました。
x^{2}-10x+25-9=0
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-5\right)^{2} を展開します。
x^{2}-10x+16=0
25 から 9 を減算して 16 を求めます。
x^{2}-10x=-16
両辺から 16 を減算します。 ゼロから何かを引くとその負の数になります。
x^{2}-10x+\left(-5\right)^{2}=-16+\left(-5\right)^{2}
-10 (x 項の係数) を 2 で除算して -5 を求めます。次に、方程式の両辺に -5 の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-10x+25=-16+25
-5 を 2 乗します。
x^{2}-10x+25=9
-16 を 25 に加算します。
\left(x-5\right)^{2}=9
因数x^{2}-10x+25。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-5\right)^{2}}=\sqrt{9}
方程式の両辺の平方根をとります。
x-5=3 x-5=-3
簡約化します。
x=8 x=2
方程式の両辺に 5 を加算します。