x を解く
x=1
x=4
グラフ
共有
クリップボードにコピー済み
x^{2}-5x+6=2
分配則を使用して x-3 と x-2 を乗算して同類項をまとめます。
x^{2}-5x+6-2=0
両辺から 2 を減算します。
x^{2}-5x+4=0
6 から 2 を減算して 4 を求めます。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -5 を代入し、c に 4 を代入します。
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
-5 を 2 乗します。
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
-4 と 4 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
25 を -16 に加算します。
x=\frac{-\left(-5\right)±3}{2}
9 の平方根をとります。
x=\frac{5±3}{2}
-5 の反数は 5 です。
x=\frac{8}{2}
± が正の時の方程式 x=\frac{5±3}{2} の解を求めます。 5 を 3 に加算します。
x=4
8 を 2 で除算します。
x=\frac{2}{2}
± が負の時の方程式 x=\frac{5±3}{2} の解を求めます。 5 から 3 を減算します。
x=1
2 を 2 で除算します。
x=4 x=1
方程式が解けました。
x^{2}-5x+6=2
分配則を使用して x-3 と x-2 を乗算して同類項をまとめます。
x^{2}-5x=2-6
両辺から 6 を減算します。
x^{2}-5x=-4
2 から 6 を減算して -4 を求めます。
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
-5 (x 項の係数) を 2 で除算して -\frac{5}{2} を求めます。次に、方程式の両辺に -\frac{5}{2} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
-\frac{5}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
-4 を \frac{25}{4} に加算します。
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
因数x^{2}-5x+\frac{25}{4}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
方程式の両辺の平方根をとります。
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
簡約化します。
x=4 x=1
方程式の両辺に \frac{5}{2} を加算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}