計算
\left(x+\left(6-i\right)\right)\left(x+\left(6+i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
展開
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
共有
クリップボードにコピー済み
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x-\left(-1+3i\right) と x-\left(-1+3i\right) を乗算して \left(x-\left(-1+3i\right)\right)^{2} を求めます。
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-6-i の反数は 6+i です。
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x+\left(6+i\right) と x-\left(-6+i\right) を乗算します。
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) と \left(x-\left(-1+3i\right)\right)^{2} を乗算します。
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -6+i を乗算して 6-i を求めます。
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -1+3i を乗算して 1-3i を求めます。
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(x+\left(1-3i\right)\right)^{2} を展開します。
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x と x+\left(6-i\right) を乗算します。
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x^{2}+\left(6-i\right)x の各項と x^{2}+\left(2-6i\right)x+\left(-8-6i\right) の各項を乗算することで、分配法則を適用します。
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(2-6i\right)x^{3} と \left(6-i\right)x^{3} をまとめて \left(8-7i\right)x^{3} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(-8-6i\right)x^{2} と \left(6-38i\right)x^{2} をまとめて \left(-2-44i\right)x^{2} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -6+i を乗算して 6-i を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
-1 と -1+3i を乗算して 1-3i を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(x+\left(1-3i\right)\right)^{2} を展開します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
分配則を使用して 6+i と x+\left(6-i\right) を乗算します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
\left(6+i\right)x+37 の各項と x^{2}+\left(2-6i\right)x+\left(-8-6i\right) の各項を乗算することで、分配法則を適用します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
\left(18-34i\right)x^{2} と 37x^{2} をまとめて \left(55-34i\right)x^{2} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(-42-44i\right)x と \left(74-222i\right)x をまとめて \left(32-266i\right)x を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(8-7i\right)x^{3} と \left(6+i\right)x^{3} をまとめて \left(14-6i\right)x^{3} を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
\left(-2-44i\right)x^{2} と \left(55-34i\right)x^{2} をまとめて \left(53-78i\right)x^{2} を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
\left(-54-28i\right)x と \left(32-266i\right)x をまとめて \left(-22-294i\right)x を求めます。
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x-\left(-1+3i\right) と x-\left(-1+3i\right) を乗算して \left(x-\left(-1+3i\right)\right)^{2} を求めます。
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-6-i の反数は 6+i です。
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x+\left(6+i\right) と x-\left(-6+i\right) を乗算します。
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) と \left(x-\left(-1+3i\right)\right)^{2} を乗算します。
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -6+i を乗算して 6-i を求めます。
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -1+3i を乗算して 1-3i を求めます。
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(x+\left(1-3i\right)\right)^{2} を展開します。
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
分配則を使用して x と x+\left(6-i\right) を乗算します。
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x^{2}+\left(6-i\right)x の各項と x^{2}+\left(2-6i\right)x+\left(-8-6i\right) の各項を乗算することで、分配法則を適用します。
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(2-6i\right)x^{3} と \left(6-i\right)x^{3} をまとめて \left(8-7i\right)x^{3} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(-8-6i\right)x^{2} と \left(6-38i\right)x^{2} をまとめて \left(-2-44i\right)x^{2} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-1 と -6+i を乗算して 6-i を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
-1 と -1+3i を乗算して 1-3i を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(x+\left(1-3i\right)\right)^{2} を展開します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
分配則を使用して 6+i と x+\left(6-i\right) を乗算します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
\left(6+i\right)x+37 の各項と x^{2}+\left(2-6i\right)x+\left(-8-6i\right) の各項を乗算することで、分配法則を適用します。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
\left(18-34i\right)x^{2} と 37x^{2} をまとめて \left(55-34i\right)x^{2} を求めます。
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(-42-44i\right)x と \left(74-222i\right)x をまとめて \left(32-266i\right)x を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(8-7i\right)x^{3} と \left(6+i\right)x^{3} をまとめて \left(14-6i\right)x^{3} を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
\left(-2-44i\right)x^{2} と \left(55-34i\right)x^{2} をまとめて \left(53-78i\right)x^{2} を求めます。
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
\left(-54-28i\right)x と \left(32-266i\right)x をまとめて \left(-22-294i\right)x を求めます。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}