x を解く
x=-5
x=-15
グラフ
共有
クリップボードにコピー済み
\left(x+10\right)^{2}=25
x+10 と x+10 を乗算して \left(x+10\right)^{2} を求めます。
x^{2}+20x+100=25
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(x+10\right)^{2} を展開します。
x^{2}+20x+100-25=0
両辺から 25 を減算します。
x^{2}+20x+75=0
100 から 25 を減算して 75 を求めます。
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に 20 を代入し、c に 75 を代入します。
x=\frac{-20±\sqrt{400-4\times 75}}{2}
20 を 2 乗します。
x=\frac{-20±\sqrt{400-300}}{2}
-4 と 75 を乗算します。
x=\frac{-20±\sqrt{100}}{2}
400 を -300 に加算します。
x=\frac{-20±10}{2}
100 の平方根をとります。
x=-\frac{10}{2}
± が正の時の方程式 x=\frac{-20±10}{2} の解を求めます。 -20 を 10 に加算します。
x=-5
-10 を 2 で除算します。
x=-\frac{30}{2}
± が負の時の方程式 x=\frac{-20±10}{2} の解を求めます。 -20 から 10 を減算します。
x=-15
-30 を 2 で除算します。
x=-5 x=-15
方程式が解けました。
\left(x+10\right)^{2}=25
x+10 と x+10 を乗算して \left(x+10\right)^{2} を求めます。
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
方程式の両辺の平方根をとります。
x+10=5 x+10=-5
簡約化します。
x=-5 x=-15
方程式の両辺から 10 を減算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}